Successful Implementation of CCSS and Smarter Balanced Assessment System

Sue Gendron, President
November 4, 2014

Key Questions

1. What are the key points about SBAC, which will help with any new messages regarding assessment?

1. What are the specific considerations for curriculum and technology that our systems need in order to be ready for full implementation?

2. What major points do my teachers need to know about SBAC so that they have confidence that our systems are ready for full implementation?

3. How will assessment and data analysis be different?
What are the key points about SBAC, which will help with any new messages regarding assessment?
Key Points For All Audiences

• Smarter Balanced is part of our [INSERT SCHOOL/DISTRICT]'s plan to prepare all students for success in college and careers.

• Smarter Balanced is more than just a year-end test. Teachers will have access to resources that help them check in on student progress throughout the year.
 – [INSERT DETAILS ABOUT SCHOOL/DISTRICT IMPLEMENTATION]

• Because the new assessments measure higher standards, the definition of grade-level performance will be higher than it was with old tests.

Smarter Balanced
Assessment System Overview
A Balanced Assessment System

Online assessments that measure progress toward readiness for college and careers

- **Digital Library**
 - Available Now
 - Formative assessment resources and practices that teachers can use as needed throughout the year

- **Interim Assessments**
 - Available Beginning Winter 2014-15
 - Optional assessments that allow educators to check student progress and provide information to inform instruction during the year

- **Summative Assessments**
 - Available Spring 2015
 - Year-end assessments for grades 3-8 and 11 with a computer adaptive test and performance tasks in math and English

Smarter Balanced gives educators information and tools to improve teaching and learning

An Academic Check-up to Measure College and Career Readiness

- Writing at every grade
- New question types and performance tasks that ask students to demonstrate an array of research, writing, and problem solving skills
- Accessibility tools for all students and accommodations—such as Braille—for those who need them
- Developed with input from K-12 teachers, higher education faculty, and other experts
Digital Library
Available Now

- An online collection of resources aligned to the Common Core that will support K-12 teachers’ use of the formative assessment process
 - Assessment literacy modules
 - Exemplar instructional modules
 - Education resources submitted and vetted by teachers
- Teachers can rate materials and share their expertise with educators across the country

Interim Assessments
Available Beginning Winter 2014-15

- **Optional assessments** administered in grades 3-8 and high school
 - At the high school level, the assessments are consistent with the grade 11 summative design and may be administered in grades 9, 10, 11, and/or 12.
 - Allow schools to check in on student progress and provide information to inform instruction
- **Flexible administration options**
 - **Interim Comprehensive Assessments** use the same design as the summative assessments, assess the same range of standards, and provide scores on the same scale.
 - **Interim Assessment Blocks** focus on smaller sets of related standards and provide more detailed information for instructional purposes.
Summative Assessments
Available Spring 2015

• Year-end English and math assessments administered in grades 3-8 and 11

• Students will complete a computer adaptive test and performance task in each subject area

• Students will receive composite scores for each subject area and the following claim-level scores:
 • English language arts-reading, writing, listening, and research;
 • Math-concepts and procedures, problem solving and modeling/data analysis, and communicating reasoning

<table>
<thead>
<tr>
<th>Test Type</th>
<th>Grades</th>
<th>CAT</th>
<th>Perf. Task Only</th>
<th>Total</th>
<th>Class Activity</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>English Language Arts</td>
<td>3-5</td>
<td>1:30</td>
<td>2:00</td>
<td>3:30</td>
<td>.30</td>
<td>4:00</td>
</tr>
<tr>
<td></td>
<td>6-8</td>
<td>1:30</td>
<td>2:00</td>
<td>3:30</td>
<td>.30</td>
<td>4:00</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>2:00</td>
<td>2:00</td>
<td>4:00</td>
<td>.30</td>
<td>4:30</td>
</tr>
<tr>
<td>Mathematics</td>
<td>3-5</td>
<td>1:30</td>
<td>1:00</td>
<td>2:30</td>
<td>.30</td>
<td>3:00</td>
</tr>
<tr>
<td></td>
<td>6-8</td>
<td>2:00</td>
<td>1:00</td>
<td>3:00</td>
<td>.30</td>
<td>3:30</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>2:00</td>
<td>1:30</td>
<td>3:30</td>
<td>.30</td>
<td>4:00</td>
</tr>
<tr>
<td>COMBINED</td>
<td>3-5</td>
<td>3:00</td>
<td>3:00</td>
<td>6:00</td>
<td>1:00</td>
<td>7:00</td>
</tr>
<tr>
<td></td>
<td>6-8</td>
<td>3:30</td>
<td>3:00</td>
<td>6:30</td>
<td>1:00</td>
<td>7:30</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>4:00</td>
<td>3:30</td>
<td>7:30</td>
<td>1:00</td>
<td>8:30</td>
</tr>
</tbody>
</table>

Times are estimates of test length for most students. Smarter Balanced assessments are designed as untimed tests; some students may need and should be afforded more time than shown in this table.
Table 4. Criteria and Indicators for Readiness

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Did LEA respondents indicate improvement in technological readiness from before the Field Test to after the Field Test?</td>
<td>Suggested Progress in Technology Readiness</td>
</tr>
<tr>
<td></td>
<td>Proportion of LEA survey respondents reporting being prepared before the field test compared to proportion reporting being prepared after the field test</td>
</tr>
<tr>
<td>2. Was there a high and successful level of participation in the spring 2014 Field Test?</td>
<td>Significant LEA and Student Participation in Field Test</td>
</tr>
<tr>
<td></td>
<td>Significant proportion of LEAs and students participating in the Smarter Balanced Field Test to provide evidence that LEAs accomplished the technological and procedural requirements to administer the Field Test</td>
</tr>
<tr>
<td>3. Was the Field Test participation regarding technology productive?</td>
<td>Positive LEA Feedback of Readiness After Field Test</td>
</tr>
<tr>
<td></td>
<td>Positive LEA post-Field Test feedback to reflect readiness and lessons learned for implementation</td>
</tr>
</tbody>
</table>

Issues to Address Before the 2015 Operational Administration (ETS)

1. The ETS survey responses to two questions (Questions 114 and 115, open-ended) revealed the following feedback from LEA coordinator respondents:

2. **Preparations** – Students need to take field tests in addition to developing computer skills. For teachers and staff, they also need to work with the Field Test, become trained on using the testing devices, and improve their general computer literacy and proficiency with administering the tests.

3. **Scheduling** – Scheduling is a big challenge viewed by LEA coordinators. A large proportion of LEA coordinators (74 percent) reported it was difficult to predict the amount of time students need in completing the test. This sentiment was also observed in the ETS focus group study. Being flexible seemed to be the strategy used by many LEA coordinators.

Report and Recommendations for the Full Implementation of Smarter Balanced Summative Assessments as Required by Education Code Section 60648.5 October 1, 2014
Issues to Address Before the 2015 Operational Administration (ETS)

4. Technology – LEA coordinators recognized that their technology infrastructure needed updating and they need to increase their bandwidth. They also reported that they need more devices for testing. They recommended devices that worked well for them and also the ones that did not work well.

5. Support for Staff – LEA coordinators reported it is important to provide site-based technology support for schools and have a sufficient number of proctors in the room during testing.

6. Accommodations and Designated Supports – LEA coordinators commented on the need for better understanding of, planning for, and training on designated supports. They also reported that there is a need to develop a process for identifying students' eligibility for various supports.

Table 5. Progress in Technology Readiness

<table>
<thead>
<tr>
<th>Findings: Suggested Progress in Technology Readiness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Findings</td>
</tr>
<tr>
<td>A majority of study participants—survey respondents and focus group attendees—reported that they are ready for online operational testing in 2015. Responses indicated that experience gained through field testing contributed to increased readiness. Participants also identified areas that needed improvement at both the statewide and LEA levels.</td>
</tr>
<tr>
<td>Rating Technology Readiness Before the Field Test (Question 112)</td>
</tr>
<tr>
<td>A total of 41 percent of the LEA coordinator respondents (n=422) indicated that technologically their LEA was ready (21 percent), significantly ready (12 percent) or highly ready (8 percent) before the Field Test.</td>
</tr>
<tr>
<td>Rating Technology Readiness After the Field Test (Question 113)</td>
</tr>
<tr>
<td>A total of 68 percent of the LEA coordinator respondents (n=424) indicated that technologically their LEA was ready (38 percent), significantly ready (18 percent), highly ready (12 percent) after the Field Test.</td>
</tr>
</tbody>
</table>
Table 4. Criteria and Indicators for Readiness

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Did LEA respondents indicate improvement in technological readiness from before the Field Test to after the Field Test?</td>
<td>Suggested Progress in Technology Readiness</td>
</tr>
<tr>
<td></td>
<td>Proportion of LEA survey respondents reporting being prepared before the field test compared to proportion reporting being prepared after the field test.</td>
</tr>
<tr>
<td>2. Was there a high and successful level of participation in the spring 2014 Field Test?</td>
<td>Significant LEA and Student Participation in Field Test</td>
</tr>
<tr>
<td></td>
<td>Significant proportion of LEAs and students participating in the Smarter Balanced Field Test to provide evidence that LEAs accomplished the technological and procedural requirements to administer the Field Test.</td>
</tr>
<tr>
<td>3. Was the Field Test participation regarding technology productive?</td>
<td>Positive LEA Feedback of Readiness After Field Test</td>
</tr>
<tr>
<td></td>
<td>Positive LEA post-Field Test feedback to reflect readiness and lessons learned for implementation.</td>
</tr>
</tbody>
</table>

Table 6. LEA and Student Participation in Field Test

Findings: Significant LEA and Student Participation in Field Test

ELA
- 90 percent of students in grades three through eight who were eligible to test completed the ELA CAT and 46 percent completed the ELA PT.
 - 63 percent of students in grade eleven who were eligible to test completed the ELA CAT and 32 percent completed the ELA PT.

Mathematics tests
- 92 percent of students in grades three through eight who were eligible to test completed the mathematics CAT and 48 percent completed the mathematics PT.
 - 62 percent of students in grade eleven who were eligible to test completed the mathematics CAT and 32 percent completed the mathematics PT CAT and PT tests.
- 95 percent of students in grades three through eight took a CAT (in either ELA or mathematics) and a PT (in either ELA or mathematics).
 - 65 percent of students in grade eleven took a CAT (in either ELA or mathematics) and a PT (in either ELA or mathematics).

CAT = Computer-adaptive test, PT = Performance task
Recommendations for CA Full Implementation in 2015

1. Administer the Smarter Balanced technology-enabled summative assessments in spring 2015. Provide the Smarter Balanced paper-pencil assessments to those schools that lack the necessary broadband connectivity for online testing or are unable to administer the braille version online, and encourage those LEAs to develop a plan to overcome these barriers by the 2016–17 school year.

2. Continue to provide professional development and training for:
 a. CCSS aligned instruction and assessment.
 b. Alignment of classroom and assessment accessibility supports, and
 c. Administration of the Smarter Balanced Summative Assessments.

3. Provide on going support to LEAs that experience technology-related barriers, including information about resources and technical support.

4. Use the consortium technology-enabled summative assessment development and implementation, as a model, to guide the development and implementation of a computer-based alternate assessment that is aligned with the CCSS in ELA and mathematics. The alternate assessment will be made available to all eligible students with significant cognitive disabilities who have an individualized education program (IEP)
Team Huddle

Implications of the recommendations for your district?

Accessibility and Accommodations

- Designed for all students, including students with disabilities and English language learners
- Three kinds of supports:
 - Universal tools available to all
 - Designated supports for those with identified need
 - Accommodations for students with an IEP or 504 plan
Team Huddle

Do you have plans to integrate the accessibility and accommodations tools into your curriculum and instruction?

Five minute huddle

Smarter Balanced

Take the Test
Online Practice and Training Tests

- ELA/literacy and mathematics, grades 3-8 and 11
 - www.smarterbalanced.org/practice-test
- Students can practice using the software
- Scoring guides
- Accommodations
 - Text-to-speech
 - Braille
 - Pop-up Spanish glossary (mathematics only)

Sample Questions

- More than multiple-choice
 - Constructed response (writing)
 - Performance tasks
 - Interactive questions
- Allow students to demonstrate critical thinking and real-world problem solving.

4th grade math question

Scott is reading a book that has 172 pages. Melanie is reading a book that has twice as many pages as Scott’s book. How many pages does Melanie’s book have? Select all the equations that represent this problem.

- $172 + 3 = \square$
- $3 \times \square = 172$
- $172 \times 3 = \square$
- $\square + 3 = 172$
- $\square \div 172 = 3$
- $172 \div \square = 3$
Technology-Enhanced Item (High School)

Two water tanks are shown. Tank A is a rectangular prism and Tank B is a cylinder. The tanks are not drawn to scale.

Tank A is filled with water to the 10-meter mark.

Click Tank A to change the water level. The volume of water that moves Tank A is transferred to Tank B, and the height of the water in Tank B is shown.

Drag one number into the box to show the approximate radius of the base of Tank B.

Short–Text Item (Grade 11)

A student is writing a letter to the school board about a plan to require students to wear electronic identification tags. Read the beginning of the letter and complete the task that follows.

I am writing in support of the school board’s plan to require students to wear electronic identification tags. I believe the administration has the right to require this arrangement, although the proposal may raise privacy concerns. An implementation could be tried and evaluated before a final decision is made. An alternative plan may also be desirable and feasible, but the proposal is a step in the right direction.

Student Notes:

- The student has taken these notes from credible sources:
 - Florida Department of Education’s Constitution states: "The right of the people to be secure in their persons, houses, papers, and effects, against unreasonable searches and seizures, shall not be violated; and no warrants shall issue but upon probable cause, supported by a probable cause statement, and presided over by an impartial and independent judge.
 - Delaware Code (Title 1, § 1104) states: "Every officer who is authorized to make a search or seizure shall make a citation before actually searching or seizing any property, and the citation shall contain a statement of the nature of the violation.
 - US Supreme Court in New Jersey v. T.L.O.: The court has held that a student’s expectation of privacy is less than an adult, and that a school’s right to search a student’s purse is reasonable in light of the school’s interest in maintaining a drug-free school environment.

Help ensure that it is not harming education to focus on education.

Some year before the board passes a resolution in favor of the Fourth Amendment.

Student Notes:

- The student has taken these notes from credible sources:
 - Florida Department of Education’s Constitution states: "The right of the people to be secure in their persons, houses, papers, and effects, against unreasonable searches and seizures, shall not be violated; and no warrants shall issue but upon probable cause, supported by a probable cause statement, and presided over by an impartial and independent judge.
 - Delaware Code (Title 1, § 1104) states: "Every officer who is authorized to make a search or seizure shall make a citation before actually searching or seizing any property, and the citation shall contain a statement of the nature of the violation.
 - US Supreme Court in New Jersey v. T.L.O.: The court has held that a student’s expectation of privacy is less than an adult, and that a school’s right to search a student’s purse is reasonable in light of the school’s interest in maintaining a drug-free school environment.

Help ensure that it is not harming education to focus on education.
Communication Strategies

Preparing for New Test Scores

- Smarter Balanced assessments measure the full range of the Common Core State Standards. They are designed to let teachers and parents know whether students are on track to be college- and career-ready by the time they graduate.
- Because the new standards set higher expectations for students—and the new tests are designed to assess student performance against these higher expectations—our definition of grade level performance is higher than it used to be.
- As a result, it's likely that fewer students will meet grade level standards, especially for the first few years. Results should improve as students have additional years of instruction aligned to the new standards and become better equipped to meet the challenges they present.
- This does not mean that our students are “doing worse” than they did last year. Rather, the scores represent a “new baseline” that provides a more accurate indicator for educators, students, and parents as they work to meet the rigorous demands of college and career readiness.
A Balanced Assessment System

An Academic Check-up to Measure College and Career Readiness

- Writing at every grade
- New question types and performance tasks that ask students to demonstrate an array of research, writing, and problem solving skills
- Accessibility tools for all students and accommodations—such as Braille—for those who need them
- Developed with input from K-12 teachers, higher education faculty, and other experts
Resources for Schools

- **Technology**
 - *Technology Strategy Framework*, bandwidth test, and readiness calculator
 http://www.smarterbalanced.org/smarter-balanced-assessments/technology/
 - Test-taking devices and approved browsers
 http://www.smarterbalanced.org/test-taking-devices-approved-secure-browsers/

- **Accessibility and Accommodations**
 - *Usability, Accessibility, and Accommodations Guidelines*, ISAAP tool, assistive technology typology, and other resources
 http://www.smarterbalanced.org/parents-students/support-for-under-represented-students/

- **Digital Library**
 - Video tours and presentations
 http://www.smarterbalanced.org/k-12-education/teachers/
Resources for Teachers

- Smarter Balanced factsheet for teachers

- Teaching Channel – Videos of teachers demonstrating their best educational practices aligned to the CCSS
 https://www.teachingchannel.org/videos?page=1&categories=organizations_national_topics_common-core&load=1

- Student Achievement Partners – Common Core videos and teacher testimonials
 http://achievethecore.org/page/762/introductory-videos-on-the-common-core-state-standards

- Council of the Great City Schools Training Videos
 - ELA/literacy
 http://www.commoncoreworks.org/domain/127
 - Mathematics
 http://www.commoncoreworks.org/Page/345

Resources for Parents

- Smarter Balanced factsheet for parents

- Council of the Great City Schools
 - Common Core Video
 http://www.commoncoreworks.org/domain/157
 - Parent Roadmaps
 http://www.commoncoreworks.org/domain/114
 http://www.commoncoreworks.org/domain/149

- PTA
 - Parents’ Guide to Student Success
 http://pta.org/parents/content.cfm?ItemNumber=2583
 - State Assessment Guides
 http://www.pta.org/advocacy/content.cfm?ItemNumber=3816
Learn More

SmarterBalanced.org

Resources in Spanish
http://www.smarterbalanced.org/parents-students/como-ayudar-a-todos-los-estudiantes-a-que-tengan-exito/

Stay Connected

Sign up for Smarter News
SmarterBalanced.org/stay-connected

Get instant updates
Twitter.com/SmarterBalanced
Communication Plan:
Count off by threes
Divide into groups
Ones-Teachers
Twos – Parents
Threes - Community

Communication
1. What key messages are important for your stakeholder
2. What resources and tools might be helpful
3. How will you deliver the message
4. Timeline
5. 20 minutes.
Curriculum and Instruction Considerations

Begin with the end in mind!
Bachelor’s Degrees

1. Business
2. General Studies
3. Social science and History
4. Psychology
5. Health Professions
6. Education
7. Visual and Performing Arts
8. Engineering and Technology
9. Communications and Journalism
10. Computer and Information Science
11/4/2014

By 2018, **61%** of jobs in California will require postsecondary education. This is **2** percentage points below the national average of **63%**. California ranks **29th** in postsecondary education intensity for 2018.

Between 2008 and 2018

1. Postsecondary jobs will grow by **1,327,000** versus 9,000 for HS graduate and dropouts
2. **5.5 million** job vacancies due to retirements
 - **3.3 million** of these jobs will require postsecondary credential
 - **1.2 million** for HS graduates
 - **614,000** for dropouts
Between 2008 and 2018

1. California is 21st in terms of jobs requiring postsecondary education.

2. 61% of all jobs (3.3 million) will require some postsecondary training beyond high school.

California Rank in Jobs Forecasted for 2018, By Education Level

<table>
<thead>
<tr>
<th>Education Level</th>
<th>2018 Jobs</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>High school dropouts</td>
<td>3,163,000</td>
<td>2</td>
</tr>
<tr>
<td>High School graduates</td>
<td>4,198,000</td>
<td>50</td>
</tr>
<tr>
<td>Some college, no degree</td>
<td>4,042,000</td>
<td>33</td>
</tr>
<tr>
<td>Associate's degree</td>
<td>1,582,000</td>
<td>39</td>
</tr>
<tr>
<td>Bachelor's degree</td>
<td>3,937,000</td>
<td>21</td>
</tr>
<tr>
<td>Graduate degree</td>
<td>1,961,000</td>
<td>15</td>
</tr>
</tbody>
</table>
Change in Jobs By Education Level: 2008 and 2018

<table>
<thead>
<tr>
<th>Education Level</th>
<th>2008 jobs</th>
<th>2018 jobs</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS dropouts</td>
<td>2,914,000</td>
<td>3,163,000</td>
<td>249,000</td>
</tr>
<tr>
<td>HS Graduates</td>
<td>3,833,000</td>
<td>4,198,000</td>
<td>365,000</td>
</tr>
<tr>
<td>Postsecondary</td>
<td>10,195,000</td>
<td>11,522,000</td>
<td>1,327,000</td>
</tr>
</tbody>
</table>

CA Economic Clusters

1. http://www.cccewd.net

2. Advanced Manufacturing *(Priority)*

3. Advanced Transportation & Renewables Agriculture, Water & Environmental Technologies *(Priority)*

 Energy (Efficiency) & Utilities *(Emergent)*

 Global Trade & Logistics *(Emergent)*
CA Economic Clusters

1. Health (*Priority*)
2. ICT/Digital Media
3. Life Sciences/Biotech Retail/Hospitality/Tourism 'Learn and Earn'
4. Small Business

Does your curriculum align to these expectations?

Is it rigorous and relevant to the future skills employers desire?
Ensure A Successful Transition

IDENTIFY Needs & Build A Plan
 Implement a System-Wide Needs Assessment
 Develop a Strategic Plan

TRANSFORM Curriculum & Instruction
 Understand Instructional Shifts
 Design Next Generation Curriculum
 Design Next Generation Assessment
 Plan Instruction to Engage All Learners

SUSTAIN Effective Practice
 Build Discipline-Specific Knowledge
 See Best Practices in Action
 Provide Side-by-Side Coaching
IMPLEMENT A SYSTEM-WIDE NEEDS ASSESSMENT

Analyze data trends, survey results, classroom observations, and interview input to identify school and district strengths, gaps, and opportunities.

Align stakeholders around the need for change and the established priorities to ensure buy-in.

DEVELOP A STRATEGIC PLAN

Plan for success by identifying concrete action steps aligned to priority areas of need.

Measure progress toward your objectives with clear performance indicators against which we monitor progress and adjust course as needed.

IDENTIFY Needs & Build a Plan

TRANSFORM Curriculum & Instruction

Understand Instructional Shifts
Design Next Generation Curriculum
Design Next Generation Assessment
Plan Instruction to Engage All Learners
Which Does Not Belong?

9, 16, 25, 43

Teacher-Facilitated Instruction

1. Gradual Release and Meaningful Practice
2. Scaffolding Instruction
3. Making Connections Explicit
4. Modeling the Process of Thinking
The Three Sacks Problem

There are three sacks with red and blue tiles in them. One is labeled *All Red*, one is labeled *All Blue*, and one is labeled *Red and Blue*. There is one thing you know for sure, each of the sacks is mislabeled. You can’t look in any of the sacks, but you may remove one tile from one of the sacks. Which sack would you reach into so that you could correctly label all the sacks?

Evidence of Learning

Are students—
1. Reasoning to make sense of math?
2. Engaging in productive discourse?
3. Demonstrating flexibility, accuracy, and efficiency with procedures?
4. Using representations flexibly and appropriately to model mathematics?
5. Persevering to solve problems?
Backward Design

“To begin with the end in mind means to start with a clear understanding of your destination. It means you know where you’re going...so that the steps you take are always in the right direction.”

—Stephen Covey in *The Seven Habits of Highly Effective People*

What Is Backward Design?

It's thinking about assessment **BEFORE** deciding **how** you teach.
Stages to Transform Curriculum & Instruction

- **STAGE 1** Gain Acute Knowledge of the Standards
- **STAGE 2** Understand Evidence-Centered Design
- **STAGE 3** Develop a Calendar of Standards
- **STAGE 4** Write Units of Study
- **STAGE 5** Design Assessments
- **STAGE 6** Plan Instructional Strategies

What do teachers need to know to build confidence and readiness for full implementation.
Stages to Transform Curriculum & Instruction

Stage 1

Gain Acute Knowledge of the Standards

Identifying Skills and Concepts

LA.6.RL.2.4 **Determine** the meaning of words and phrases as they are used in a text, including figurative and connotative meanings; **analyze** the impact of a specific word choice on meaning and tone.
The Deconstructing Process

1. Record and read the Standard.
2. Circle the verbs (skills—what students need to be able to do).
3. Underline the nouns or terms (concepts—what students need to know).
4. Write the skills and concepts in the chart.
5. Identify the process (how students show competency) and prerequisite skills.

Deconstruct the Standards

RL.4.2 Determine a theme of a story, drama, or poem from details in the text; summarize the text.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Skills</th>
<th>Concepts</th>
<th>Process</th>
<th>Prerequisite Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>RL.4.2</td>
<td>Determine</td>
<td>a theme of a story, drama,</td>
<td>by using details</td>
<td>Theme/Details</td>
</tr>
<tr>
<td></td>
<td>Summarize</td>
<td>or poem</td>
<td>in the text</td>
<td>Story</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the text</td>
<td>N/A</td>
<td>Drama</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Poem</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Summarizing</td>
</tr>
</tbody>
</table>

Common Core State Standards © Copyright 2010 by National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved.
Deconstruct the Standards

RL.9–10.1 Cite strong and thorough textual evidence to support analysis of what the text says explicitly as well as inferences drawn from the text.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Skills</th>
<th>Concepts</th>
<th>Process</th>
<th>Prerequisite Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>RL.9.1</td>
<td>Cite</td>
<td>strong and thorough textual evidence</td>
<td>N/A</td>
<td>Citing text evidence</td>
</tr>
<tr>
<td></td>
<td>Support</td>
<td>analysis of what the text says</td>
<td>explicitly and inferentially</td>
<td>Making inferences</td>
</tr>
</tbody>
</table>

Questions for Deconstruction

<table>
<thead>
<tr>
<th>Skills</th>
<th>Concepts</th>
<th>Process</th>
<th>Prerequisite Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>What do students need to be able to do? (verbs)</td>
<td>What do students need to know? (nouns)</td>
<td>How do students show competency?</td>
<td>What skills do students need to have already?</td>
</tr>
</tbody>
</table>
Stage 2

Evidence Centered Design

Key Components of Evidence-Centered Design

1. Define the domain
 - Math/ELA Standards
2. Define claims to be made
 - ELA & Math Claims Content Specifications
3. Define assessment targets
 - Knowledge, Skills & Abilities
4. Define evidence required
 - Evidence to Be Elicited From Student
5. Develop task models
 - Methods for Eliciting Evidence
6. Develop items or performance tasks
Assessment Claims and Targets

Claims
- Broad statements of the assessment system’s learning outcomes, each of which requires evidence
- For each Claim, Smarter Balanced provides a set of assessment targets.

Targets
- Expectations of what the items and tasks within each claim will assess
- A target represents the prioritized content for summative assessment.

ELA/Literacy
- Read sufficiently complex texts independently
- Write effectively to sources
- Speaking and Listening
- Build and present knowledge through research

Math
- Concepts and Procedures
- Problem Solving
- Communication and Reasoning
- Modeling and Data Analysis
Assessment targets for Literacy

<table>
<thead>
<tr>
<th>Target</th>
<th>DOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Key Details</td>
<td>1,2</td>
</tr>
<tr>
<td>2. Central Ideas</td>
<td>2</td>
</tr>
<tr>
<td>3. Word Meaning</td>
<td>1,2</td>
</tr>
<tr>
<td>4. Reasoning and Evaluation</td>
<td>3,4</td>
</tr>
<tr>
<td>5. Analysis within or across texts</td>
<td>3,4</td>
</tr>
<tr>
<td>6. Text stimulus and features</td>
<td>3,4</td>
</tr>
<tr>
<td>7. Language Use</td>
<td>2,3</td>
</tr>
</tbody>
</table>

Assessment Targets for Informational Text

<table>
<thead>
<tr>
<th>Target</th>
<th>DOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. Key details</td>
<td>1,2</td>
</tr>
<tr>
<td>9. Central Ideas</td>
<td>2</td>
</tr>
<tr>
<td>10. Word Meaning</td>
<td>1,2</td>
</tr>
<tr>
<td>11. Reasoning and Evaluation</td>
<td>3,4</td>
</tr>
<tr>
<td>12. Analysis within or across texts</td>
<td>2.3</td>
</tr>
<tr>
<td>Elem; 3,4 MS and HS</td>
<td></td>
</tr>
<tr>
<td>13. Text Structures and Features</td>
<td>2</td>
</tr>
<tr>
<td>Elem, 3,4 MS and HS</td>
<td></td>
</tr>
<tr>
<td>14. Language Use</td>
<td>2,3</td>
</tr>
<tr>
<td>Elem; 3 MS and HS</td>
<td></td>
</tr>
</tbody>
</table>
Depth of Knowledge

<table>
<thead>
<tr>
<th>DOK Level</th>
<th>Title of Level</th>
<th>Rigor/Relevance Framework</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Recall and Reproduction</td>
<td>Quadrant A</td>
</tr>
<tr>
<td>2</td>
<td>Skills and Concepts</td>
<td>Quadrant B</td>
</tr>
<tr>
<td>3</td>
<td>Strategic Thinking</td>
<td>Quadrant C</td>
</tr>
<tr>
<td>4</td>
<td>Extended Thinking</td>
<td>Quadrant D</td>
</tr>
</tbody>
</table>
Mathematics Assessment Claims

1. **Claim 1: Concepts and Procedures**
 - Students can explain and apply mathematical concepts and interpret and carry out mathematical procedures with precision and fluency

2. **Claim 2: Problem Solving**
 - Students can solve a range of complex well-posed problems in pure and applied mathematics, making productive use of knowledge and problem solving strategies

3. **Claim 3: Communicating Reasoning**
 - Students can clearly and precisely construct viable arguments to support their own reasoning and to critique the reasoning of others

4. **Claim 4: Modeling and Data Analysis**
 - Students can analyze complex, real-world scenarios and can construct and use mathematical models to interpret and solve problems

Claim 2 Targets – Problem Solving

A. Apply mathematics to solve well-posed problems arising in everyday life, society, and the workplace

B. Select and use tools strategically

C. Interpret results in the context of the situation

D. Identify important quantities in a practical situation and map their relationships.
Claim 3 Targets – Communicating Reason

A. Test propositions or conjectures with specific examples.
B. Construct, autonomously, chains of reasoning that justify or refute propositions or conjectures.
C. State logical assumptions being used.
D. Use the technique of breaking an argument into cases.
E. Distinguish correct logic or reasoning from that which is flawed, and—if there is a flaw in the argument—explain what it is.
F. Base arguments on concrete referents such as objects, drawings, diagrams, and actions.
G. Determine conditions under which an argument does and does not apply.

Claim 4 Targets – Modeling and Data Analysis

A. Apply mathematics to solve problems arising in everyday life, society, and the workplace.
B. Construct, autonomously, chains of reasoning to justify mathematical models used, interpretations made, and solutions proposed for a complex problem.
C. State logical assumptions being used.
D. Interpret results in the context of a situation.
E. Analyze the adequacy of and make improvement to an existing model or develop a mathematical model of a real phenomenon.
F. Identify important quantities in a practical situation and map their relationships.
G. Identify, analyze, and synthesize relevant external resources to pose or solve problems.
Stages to Transform Curriculum & Instruction

- **STAGE 1**: Gain Acute Knowledge of the Standards
- **STAGE 2**: Understand Evidence-Centered Design
- **STAGE 3**: Develop a Calendar of Standards
- **STAGE 4**: Write Units of Study
- **STAGE 5**: Design Assessments
- **STAGE 6**: Plan Instructional Strategies

Big Ideas: Broad, Topical or Both

1. **Broad** Big Ideas are the **generalizations** derived from one area of study that connect to and can be found in several subject matter areas.

 We interpret information and draw conclusions both from what we read and from what we experience in real life.

2. **Topical** Big Ideas relate clearly to **one content area** only.

 Mathematical formulas and estimates provide shortcuts for determining needed mathematical information.
Essential Questions = Mental Velcro for students

1. Essential Questions
 - define big ideas or enduring understandings
 - set direction for a unit of study’s content-skill sets
 - create depth rather than breadth given time constraints
 - increase interaction and retention of what students must know and be able to do

Types of Assessments

- Summative Assessments
 - End-of-year assessment
 - State assessment
 - Aligned to content-area standards
 - Measures Adequate Yearly Progress

- Interim Assessments
 - 6–8 week assessment
 - School- and district-level assessment
 - Identify gaps in student learning
 - Predicts student performance on state tests
 - Data used at the classroom level

- Formative Assessments
 - Daily assessments
 - Linked to learning experience
 - Assesses student understanding
 - Data used to modify instruction
Six Item Types

Selected Response
- Students select response(s) from a provided list
- Examples include: Multiple-choice, true-false, matching

Constructed Response
- Student organizes and uses knowledge and skills to answer a question or complete a task
- Examples include: short answer, open response, extended response, essay, performance assessment

Extended Response
- Students prepare a written answer, often a short phrase, a list, or a more substantial composition
- Examples include: Multipage Essay

Constructed Response Items

Students can demonstrate their use of complex thinking skills such as:

- Formulating comparisons and contrasts
- Proposing cause and effects
- Identifying patterns or conflicting points of view
- Categorizing, summarizing, or interpreting information
- Developing generalizations, explanations, justifications, or evidence-based conclusions
Sample Constructed Response Item

The Shepherd's Boy and the Wolf

A Shepherd's Boy was tending his flock near a village, and thought it would be great fun to trick the villagers by pretending that a Wolf was attacking the sheep: so he shouted out, "Wolf! Wolf!" and when the people came running up he laughed at them because they believed him. He did this more than once, and every time the villagers found they had been tricked, for there was no Wolf at all. At last a Wolf really did come, and the Boy cried, "Wolf! Wolf!" as loud as he could: but the people were so used to hearing him call that they took no notice of his cries for help. And so no one came to help the boy, and the Wolf attacked the sheep.

In a few sentences, explain what lesson the reader can learn from the shepherd's boy. Use details from the story to support your response.

Scoring Rubric

2 The response:
 • Gives evidence of the ability to explain inferences about theme
 • Includes specific inferences that make reference to the text
 • Supports the inferences with relevant details from the text

1 The response:
 • Gives limited evidence of the ability to explain inferences about theme
 • Includes inferences but they are not explicit or make only vague references to the text
 • Supports the inference with at least one detail but the relevance of that detail to the text must be inferred

0 A response gets no credit if it provides no evidence of the ability to explain inferences and includes no relevant information from the text
Scoring Notes

Responses may include but are not limited to:

- The shepherd’s boy learned that he shouldn’t call wolf unless there is really a wolf
- The shepherd’s boy learned that he should only ask for help if he needs it or else he wouldn’t get help when he really needs it
- “The people were so used to hearing him call that they took no notice of his cries”
- The shepherd’s boy learned not to have fun by tricking people because the people learn not to trust you

Six Item Types

Performance Task/Assessment

Activity that requires students to construct a response, create a product or perform a demonstration. Open-ended—may not have one right answer, rubric used to grade.

Technology-Enhanced

Items (TEI) are computer-delivered items that include specialized interactions for collecting response data.

Examples include:
- Select a single piece of text and type in a replacement for that text, select options from drop down menu

Technology Enabled

Allow for non-traditional layout of items that use constructed-response and/or selected-responses.

Examples include:
- Sound, computer read aloud, video, interactive widget
Differentiated Instruction

1. Requires something other than a “one-size-fits-all” approach
2. Meets the needs of all students using additional supports during high-quality instruction
3. Provides students with multiple options for taking in information and making sense of ideas
4. Requires teachers to be flexible in their approach to instruction
5. Maximizes student growth by meeting them where they are

Three Areas of Differentiation

1. Content
 - Materials at varied ability or grade levels in one classroom
 - Reading materials address course content below and above grade levels
 - Content is presented in varying levels of complexity and abstractness
 - Students have the opportunity to start at different places in the curriculum and/or proceed at different paces
Three Areas of Differentiation

1. Process
 - Diverse activities are varied to meet student interests or preferences for learning
 - Recognizes the many learning styles within any group of students.

2. Product
 - Allow students to choose how they will demonstrate what they have learned
 - Providing different assignments to different students

Ensure A Successful Transition

IDENTIFY Needs & Build A Plan
- Implement a System-Wide Needs Assessment
- Develop a Strategic Plan

TRANSFORM Curriculum & Instruction
- Understand Instructional Shifts
- Design Next Generation Curriculum
- Design Next Generation Assessment
- Plan Instruction to Engage All Learners

SUSTAIN Effective Practice
- Build Discipline-Specific Knowledge
- See Best Practices in Action
- Provide Side-by-Side Coaching
Collaborative Instructional Review (CIR) Process
Leadership Development to Make Rigor, Relevance and Engagement a Reality

1. Makes every leader an **instructional** leader
2. Equips leaders to coach teachers—**formative processes** and continuous **teacher growth**
3. Guides collaboration, **reflective process**, and **data-driven teacher support**

The Entire CIR Process Is:

- **Drived by Data**
- **Common**
- **Engagement**
- **Rigor**

After every observation, a comprehensive visit report is generated, which not only shows the input from today’s visits but also the history to view teacher progress and identify the level to which each is attained in each visit.
1. Captures data to demonstrate:

- **Teacher growth** in providing rigorous, relevant, and engaging learning opportunities
- **Leader growth** in identifying effective teaching practices as defined by the rigor, relevance, and engagement rubrics

- Shows the results of professional learning initiatives by facilitating data-gathering, generating growth reports, and capturing evidence of effective instruction

Facilitated by a Powerful Online Tool

How will data be different?
Reporting Results

- Optional online platform provides a range of reports on the summative and interim assessments
- Customize reports for individual students or entire grades
- Compare results between different schools easily and efficiently
- Strong encryption and security measures to protect student information

Students can demonstrate progress toward college and career readiness in English Language arts and literacy.

Students can demonstrate college and career readiness in English language arts and literacy.

Students can read closely and analytically to comprehend a range of increasingly complex literary and informational texts.

Students can produce effective and well-grounded writing for a range of purposes and audiences.

Students can employ effective speaking and listening skills for a range of purposes and audiences.

Students can engage in research and inquiry to investigate topics, and to analyze, integrate, and present information.

Overall Claim for Grades 3-8

Overall Claim for Grade 11

Claim #1 - Reading

Claim #2 - Writing

Claim #3 - Speaking and Listening

Claim #4 - Research/Inquiry
Claims for the Mathematics Summative Assessment

Overall Claim for Grades 3-8
"Students can demonstrate progress toward college and career readiness in mathematics."

Overall Claim for Grade 11
"Students can demonstrate college and career readiness in mathematics."

Claim #1 - Concepts & Procedures
"Students can explain and apply mathematical concepts and interpret and carry out mathematical procedures with precision and fluency."

Claim #2 - Problem Solving
"Students can solve a range of complex well-posed problems in pure and applied mathematics, making productive use of knowledge and problem solving strategies."

Claim #3 - Communicating Reasoning
"Students can clearly and precisely construct viable arguments to support their own reasoning and to critique the reasoning of others."

Claim #4 - Modeling and Data Analysis
"Students can analyze complex, real-world scenarios and can construct and use mathematical models to interpret and solve problems."

College Content-Readiness Policy for Grade 11 Assessment Results

- **Level 1**
 - Not Yet Content-Ready - Substantial Support Needed
 - K-12 & higher education may offer interventions

- **Level 2**
 - Not Yet Content-Ready – Support Needed
 - Transition courses or other supports for grade 12

- **Level 3**
 - Conditionally Content-Ready/Exempt from Developmental
 - In each state, K-12 and higher education must jointly develop grade 12 requirements for students to earn exemption

- **Level 4**
 - Content-Ready/Exempt from Developmental
 - K-12 and higher education may jointly set grade 12 requirements to retain exemption (optional for states)

Note: Applies only to students who matriculate directly from high school to college.
Smarter Balanced
Setting Achievement Levels

Setting Achievement Levels

• **Online Panel**
 – Crowd sourcing – thousands of participants
 – Recommendations broken down by subgroup (teachers, higher education, etc.)

• **In-Person Panel**
 – 500 participants in grade/subject panels
 – Nominated by states
 – Bookmark procedure

• **Cross-Grade Review Committee**
 – 60 panelists from In-Person Panel
 – Review Online Panel and In-Person Panel results
 – Recommend changes
Achievement Level Timeline

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 30</td>
<td>States Approved Achievement Level Setting Plan</td>
</tr>
<tr>
<td>October 6-17</td>
<td>Online Panel</td>
</tr>
<tr>
<td>October 13-19</td>
<td>In-Person Panel (Dallas, TX)</td>
</tr>
<tr>
<td>October 20</td>
<td>Cross-Grade Review Committee</td>
</tr>
<tr>
<td>October 30</td>
<td>Technical Advisory Committee Review</td>
</tr>
<tr>
<td>November 6</td>
<td>State Vote on Achievement Level Recommendations</td>
</tr>
<tr>
<td>Fall/Winter</td>
<td>State Ratification of Achievement Levels</td>
</tr>
</tbody>
</table>

Technology Requirements

- Designed to work with technology in schools today
- Schools do NOT need one-to-one computers
 - Illustrative example: A 600-student school can be supported by a single 30-computer lab
 - Smarter Balanced Readiness Calculator at: http://www3.cde.ca.gov/sbactechcalc/
- Pencil-and-paper option available for three-year transition period
Protecting Student Information

• California will continue to retain control of student information, including assessment results.

• Smarter Balanced will never collect personally identifiable information unnecessary to the operation of the assessment system.

• States and districts cannot and will not sell student information, as prohibited by federal laws like the Family Educational Rights and Privacy Act (FERPA).